BULETINUL Universităţii Petrol - Gaze din Ploieşti	Vol. LVIII No. 2/2006	$43-48$	Seria

Non-Archimedian Fields. Topological Properties of $\mathbf{Z}_{p}, \mathbf{Q}_{p}$ (p-adics Numbers)

Mureşan Alexe Călin

Universitatea Petrol-Gaze din Ploieşti, Bd. Bucureşti 39, Ploieşti, Catedra de Matematică
e-mail: acmuresan@upg-ploiesti.ro

Abstract

The present work tries to offer a new approach to some non-Archimedian norms and to some unusual properties determined by these. Then, as an example, p-adic numbers \mathbf{Q}_{p} and some topological properties will be illustrated. The present article will present as an example some abstract notions with p-adic numbers extended to \mathbf{Q}_{p} during the translation from non- Archimedian norms to the \mathbf{Q}_{p} norm.

Key words: p-adics, non-archimedian, topological properties

Non-Archimedian Absolute Value and Non-Archimedian's Properties Fields

Definition 1. A function $\|: \mathbf{E} \rightarrow \mathbf{R}^{+}$on a field \mathbf{E} satisfying:
(1) $|x|=0 \Leftrightarrow x=0$
(2) $|x y|=|x||y|$
(3) $|x+y| \leq|x|+|y|$ (the Triangle Inequality)
is called a norm or an absolute value.
Definition 2. Let \mathbf{E} be a fields with an absolute value $\|$.
Let $a \in \mathbf{E}, r \in \mathbf{R}^{+}$. The open ball of radius r centered at a is $B_{r}(a)=\{x \in \mathbf{E}:|x-a|<r\}$.
A closen ball of radius r centered at a is $B_{r}(a)=\{x \in \mathbf{E}:|x-a| \leq r\}$.
A clopen ball of radius r centered at a is an open and in the same time an closen, ball.
Definition 3. An absolute value is called non-archimedian if it satisfies a stronger version of the Triangle Inequality:

$$
|x+y| \leq \max \{|x|,|y|\} \forall x, y \in \mathbf{E}
$$

and archimedian otherwise; and a field \mathbf{E} with an non-archimedian absolute value is called a non-archimedian field.

Proposition 1. An absolute value $|\cdot|$ on \mathbf{Q} is non-archimedian if and only if $|x| \leq 1 \forall x \in \mathrm{~N}$.

Proof. First suppose $|\cdot|$ is non-archimedian.
Then for introduction $n \in \mathbf{N}$, let be ' $P(n) ‘:|n| \leq 1$.
For $n=1$ we have $|1|=1 \leq 1 ; P(1)$ is true.
Considering now $|n| \leq 1$ for $n=k$. Then $|k+1| \leq \max \{|k|, 1\}=1 \leq 1$ and $P(k) \Rightarrow P(k+1)$.
Trough induction, $|n| \leq 1, \forall n \in \mathbf{N}$.
Now we suppose $|n| \leq 1, \forall n \in \mathbf{N}$ and we want to show $|a+b| \leq \max \{|a|,|b|\}, \forall \mathrm{a}, \mathrm{b} \in \mathbf{Q}$.
If $b=0$ we have $|a+b|=|a+0|=|a|=\max \{|a|,|0|\} \leq \max \{|a|,|b|\}$.
So if we assume that $b \neq 0$ then

$$
|a+b| \leq \max \{|a|,|b|\} / \frac{1}{|b|} \Leftrightarrow\left|\frac{a+b}{b}\right| \leq \max \left\{\frac{|a|}{|b|} ; 1\right\} \Leftrightarrow\left|\frac{a}{b}+1\right| \leq \max \left\{\left|\frac{a}{b}\right| ; 1\right\}
$$

and then it is enough to show that $|x+1| \leq \max \{|x|, 1\}, \forall \mathrm{x} \in \mathbf{Q}$.
For that, let be:

$$
|x+1|^{n}=\left|\sum_{k=0}^{n} C_{n}{ }^{k} x^{k}\right| \leq \sum_{k=0}^{n}\left|C_{n}{ }^{k}\right||x|^{k} \leq \sum_{k=0}^{n}|x|^{k} .
$$

If $|x| \leq 1$ then $|x|^{k} \leq 1$ for $k=1,2, \ldots, n$.
If $|x|>1$ then $\left|x^{k}\right| \leq\left|x^{n}\right|$ for $k=1,2, \ldots, n$.
And in both cases, $\sum_{k=0}^{n}|x|^{k} \leq(n+1) \cdot \max \left\{1,|x|^{n}\right\}$.
Then $|x+1|^{n} \leq \sum_{k=0}^{n}|x|^{k} \leq(n+1) \cdot \max \left\{1,|x|^{n}\right\}$ and $|x+1| \leq \sqrt[n]{(n+1)} \max \{1,|x|\}$
and because $\sqrt[n]{n+1} \rightarrow 1$ when $n \rightarrow \infty$ we have for the last relations:

$$
|x+1| \leq \max \{|x|, 1\},
$$

what we want to show.
Also another result which is known is that: an absolute value $|\cdot|$ on \mathbf{Q} is archimedian if $\forall \mathrm{x}, \mathrm{y} \in \mathbf{Q},(\exists) n \in \mathbf{N}$ such $|n x|>|y|$.
Lemma. In a non-archimedian field \mathbf{E} if $x, y \in \mathbf{E},|x|<|y|$, then $|y|=|x+y|$.
Proof.

$$
\left.\begin{array}{l}
\text { Assume }|x|<|y| \tag{1}\\
|x+y| \leq \max \{|x|,|y|\} \text { by the initial propreties }
\end{array}\right\} \Rightarrow|x+y| \leq|y| .
$$

Also, $y=(x+y)-x$ we have $|y| \leq \max \{|x+y|,|-x|\}=\max \{|x+y|,|x|\}$ and because $|x|<|y|$ for the last relations \Rightarrow

$$
\begin{equation*}
|y| \leq|x+y| . \tag{2}
\end{equation*}
$$

Now for (1) and (2) we have $|y|=|x+y|$.

Proposition 2. In a non-archimedian field \mathbf{E} every "triangle" is isosceles.
Proof. Let x, y, z be the "verticus" of the triangle an $|x-y|,|y-z|,|x-z|$.
If $|x-y|=|y-z|$ we are done.
If $|x-y| \neq|y-z|$ then we assume $|y-z|<|x-y|$.
But by Lemma, because $|y-z|<|x-y|$, we have $|x-y|=|(x-y)+(y-z)|=|x-z| \Rightarrow|x-y|$ $=|x-z|$ and the triangle is isosceles.

Proposition 3. In a non-archimedian field. E, every point in an open ball is a center and $b \in B_{r}(a) \Rightarrow B_{r}(a)=B_{r}(b)$.
Proof. Let $b \in B_{r}(a)$, so $|b-a|<r$ and x any element of $B_{r}(a)$.
$|x-b|=|(x-a)+(a-b)| \leq \max \{|x-a|,|a-b|\}<r$.
Hence, $x \in B_{r}(b)$ since $|x-b|<r \Rightarrow B_{r}(a) \subseteq B_{r}(b)$.
Same $B_{r}(b) \subseteq B_{r}(a)$ is obviously now.
Therefore, $B_{r}(a)=B_{r}(b)$.
Corollary 1. Let \mathbf{E} be a non-archimedian field. Then for two any open balls or one is contained in the other, or is either disjoint.

Proof. We assume $p<r$ and the problem is:

$$
x \in B_{p}(a) \text { and } x \in B_{r}(a) \Rightarrow B_{p}(a) \subseteq B_{r}(b) \text { or } B_{p}(b) \subseteq B_{r}(a) .
$$

By Proposition 3, we have:

$$
x \in B_{r}(a) \Rightarrow B_{r}(a)=B_{r}(x) \text { and } x \in B_{r}(b) \Rightarrow B_{r}(b)=B_{r}(x)
$$

Then $x \in B_{p}(a)=B_{p}(x) \subseteq B_{r}(x)=B_{r}(b)$ since $p<r$.
So, $B_{p}(a) \subseteq B_{r}(b)$.
Corollary 2. In a non-archimedian field every open ball is clopen, that is a ball which is open and closed.
Proof. Let $B_{p}(a)$ be an open ball in a non-archimedian field.
Take any x in the boundary of $B_{p}(a) \Leftrightarrow B_{r}(x) \cap B_{p}(a) \neq 0$ for any $s>0$, so in particular, for $\mathrm{s}<\mathrm{r}$.
By Corollary 1 , since $B_{r}(x)$ and $B_{p}(a)$ are not disjoint, one is conteined in the other and because $s<r$ we have $x \in B_{r}(x) \subseteq B_{p}(a) \Rightarrow B_{p}(a)$ is closed.

So every open ball is closed and every ball is clopen.

The p-adic Absolute Value and Topological Properties for \mathbf{Z}_{p} and $\mathbf{Q}_{\boldsymbol{p}}$ Non-Archimedians Fields

Definitions. Let $p \in \mathbf{N}$ be a prime, then for each $n \in \mathbf{Z}, n \neq 0$ we have $n=p^{\alpha} n^{\prime}$ with p not divides n '.
We define $f_{p}(n)=\left\{\begin{array}{l}\infty \text { for } n=0 \\ \alpha \text { when } n \neq 0\end{array}\right.$ and $|n|_{\mathrm{p}}=p^{-f_{p}(n)}$ is a non-archimedian absolute value on \mathbf{Z}, called the p-adic absolute value.

For $\frac{a}{b} \in \boldsymbol{Q}, f_{p}\left(\frac{a}{b}\right)=f_{p}(a)-f_{p}(b)$ we define a non-archimedian p-adic absolute value in \boldsymbol{Q} with the relation:

$$
|x|_{p}=p^{-f_{p}(x)},(\forall) x \in \mathbf{Q}
$$

and

$$
|x-y|_{p}=p^{-f_{p}(x-y)}(\forall) x, y \in \mathbf{Q} .
$$

Then we have:

$$
\mathbf{N}_{p}=\left\{\alpha / \alpha=\sum_{i=0}^{n} a_{i} \cdot p^{i}, a_{i}, n \in \mathbf{N} ; 0 \leq a_{i} \leq p-1\right\}
$$

are the p-adic numbers from \mathbf{N},

$$
\mathbf{Z}_{p}=\left\{\alpha / \alpha=\sum_{i=0}^{\infty} a_{i} \cdot p^{i}, a_{i} \in \mathbf{N} ; 0 \leq a_{i} \leq p-1\right\}
$$

are the p-adic numbers from \mathbf{Z} and we can define these numbers as the inverses of naturals numbers written in p-base system and the naturals numbers.

$$
\mathbf{Q}_{p}=\left\{\alpha / \alpha=\sum_{i=k}^{\infty} a_{i} \cdot p^{i}, k \in \mathbf{Z}, a_{i} \in \mathbf{N} ; 0 \leq a_{i} \leq p_{i}-1\right\}
$$

are the p-adic numbers from \mathbf{Q}.
Proposition 4. If \mathbf{E} ' it's the completion of a field \mathbf{E} with respect to an absolute value |. then
\mathbf{E} ' it's a field where we can to extend the absolute value |.|
Proof. See [3] of references.
Proposition 5. \mathbf{Q}_{p} is the completion of \mathbf{Q} with respect to $\|_{\mathrm{p}}$.
Proof. See [3] of references.
Proposition 6. $\mathbf{Z}_{p}, \mathbf{Q}_{p}$ are completes.
Proof. See [3] of references.

$$
\mathbf{Z}_{p}=\left\{x \in \mathbf{Q}_{p} /|x|_{p} \leq 1\right\} .
$$

Proof. See [5] of references.
Proposition 7. \mathbf{Z}_{p} is compact and \mathbf{Q}_{p} is locally compact, by which we mean every $x \in \mathbf{Q}_{p}$ have a neighborhood which is compact.

Proof.

(1) We know that \mathbf{Z}_{p} is complete, we want to show that \mathbf{Z}_{p} is totally bounded.

Take any $\varepsilon>0$ and $n \in \mathbf{N}$ such that $p^{-n} \leq \varepsilon$.
Then $a+p^{n} \cdot \mathbf{Z}_{p}=B_{p-n}(a) \subseteq B_{\varepsilon}(a)$ because $|x-a|_{p} \leq p^{-n}<\varepsilon(\forall) x \in a+p^{n} \mathbf{Z}_{p}$.
For $a \in \mathbf{Z} / p^{n} \mathbf{Z}$ the classes reprezentants is included in $\left\{0,1, \ldots, p, \ldots, p^{n}-1\right\}$.
We have with definition of \mathbf{Z}_{p}

$$
\mathbf{Z}_{p} \subset \bigcup_{a \in Z / p^{n} Z} a+p^{n} \mathbf{Z}_{p}=\bigcup_{a \in Z / p^{n} Z} B_{p^{-n}}(a) \subseteq \bigcup_{a \in Z / p^{n} Z} B_{\varepsilon}(a)
$$

a finite cover of \mathbf{Z}_{p}.
So $\left\{B_{\varepsilon}(a): a \in \mathbf{Z} / p^{n} \mathbf{Z}\right\}$ is a finite set of open balls which cover \mathbf{Z}_{p}, so \mathbf{Z}_{p} is totally bounded, also is complete and result it is compact.
(2) Let be $f: \mathbf{Z}_{p} \rightarrow \mathbf{Q}_{p} ; f(y)=x+y$ for $x \in \mathbf{Q}_{p}$ known, is continuous.
\mathbf{Z}_{p} is compact so the image of \mathbf{Z}_{p} is $x+\mathbf{Z}_{p}$ is also compact.
Now we can observe that $x+\mathbf{Z}_{p}$ is a compact neighborhood of $x \in \mathbf{Q}_{p}$ because for $z \in x+\mathbf{Z}_{p} ; z-$ $x \in \mathbf{Z}_{p ;}|z-x|_{p}<1$, (Proposition 2).

Remarks

We give, for students, very common definitions, available in spaces with a norm.

Definitions

Let $\left(x_{n}\right)$ be a sequence with entries in a field \mathbf{E} with an absolute value |.|.

1. $\left(x_{n}\right)$ is a Cauchy sequence if

$$
(\forall) \varepsilon>0,(\exists) \quad N_{\varepsilon} \in N
$$

such that $(\forall) m, n \geq N,\left|x_{m}-x_{n}\right|<\varepsilon$.
2. If every Cauchy sequence in \mathbf{E} converges, \mathbf{E} is complete with respect to $|$.$| .$
3. We can introduce the equivalence relation:

$$
\left(x_{n}\right) \equiv\left(y_{n}\right) \text { if }(\forall) \varepsilon>0,(\exists) N_{\varepsilon} \in N
$$

such that $(\forall) n \geq N_{\varepsilon},\left|x_{n}-y_{n}\right|<\varepsilon$.
4. The completion of field \mathbf{E} with respect to an absolute value $|$.$| is the set:$ $\left\{\left[\left(x_{n}\right)\right]:\left(x_{n}\right)\right.$ is a Cauchy sequences on $\left.\mathbf{E}\right\}$ of all equivalence classes of Cauchy sequence with the equivalence relation from 4).
5.
5.1. An open cover of a set S is a family of open sets $\left\{S_{i}\right\}$ such that $\cup_{i} S_{i} \supseteq S$.
5.2. A set S is called compact if every open cover of S has a finite subcover. If $\left\{\mathrm{S}_{i}\right\}$ is any open cover of $\cup_{i=1^{n}}^{n} S_{i} \supseteq S$ for some $n \in \mathrm{~N}$.
6. A set is called totally bounded if for ever $\varepsilon>0$, there exist a finite collection of balls of radius ε which cover the set.

Propositions

1. Compactness is preserved by continuous functions, what it means, if f is continuous and A is compact then $f(A)$ is compact.
2. Any closed subset of a complete space is complete.
3. A set is compact if it is complete and totally bounded.

References

1. Collingwood, J., Marion, S., Mazowita, M. - P-adic number, http://padic.mathstat.uottawa.ca/~MAT3166/reports/p-adic.pdf
2. Colojo ara, I. - Analiză matematică, Ed. Didactică şi Pedagogică, Bucureşti, 1983
3. Gouvea, F.Q. - P-adic Numbers: An introduction, Second Edition, Springer-Verlag, New York, 1997
4. Katok, S. - Real and p-adic analysis, Course notes for math 497c Mass program, fall 2000, Revised November 2001, Department of mathematics, the Pennsylvania State University
5. Koblitz, N. - P-adic numbers, P-adic analysis and Z-eta Functions, Second edition, SpringerVerlag, New York, 1984

Câmpuri nearhimediene. Proprietăți topologice ale lui $\mathbf{Z}_{p}, \mathbf{Q}_{p}$ (numere p-adice)

Rezumat

Lucrarea doreşte să dea o nouă abordare asupra unor norme nearhimediene şi asupra unor ciudate proprietăți induse de acestea, apoi, ca exemplu, sunt prezentate numerele p-adice \boldsymbol{Q}_{p} şi câteva proprietăți topologice. Trecând de la norme nearhimediene la norma în \boldsymbol{Q}_{p} se va da o exemplificare a unor noțiuni abstracte in numerele din baza p extinse la \boldsymbol{Q}_{p}.

